
Pertanika J. Sci. & Technol. 33 (1): 465 - 489 (2025)

Journal homepage: http://www.pertanika.upm.edu.my/

© Universiti Putra Malaysia Press

SCIENCE & TECHNOLOGY

ISSN: 0128-7680
e-ISSN: 2231-8526

Article history:
Received: 05 April 2024
Accepted: 03 September 2024
Published: 27 January 2025

ARTICLE INFO

DOI: https://doi.org/10.47836/pjst.33.1.21

E-mail addresses:
p5844@pps.umt.edu.my (Fatchurrachman) 
norhidayah.soh@umt.edu.my (Norhidayah Che Soh) 
ramisah@umt.edu.my (Ramisah Mohd Shah) 
p5277@pps.umt.edu.my (Frisa Irawan Ginting) 
sunnyg@umt.edu.my (Sunny Goh Eng Giap) 
nazirsiham@remotesensing.gov.my (Muhammad Nazir Siham) 
rudiyanto@umt.edu.my (Rudiyanto) 
* Corresponding author

Rice Extent and Cropping Patterns in Terengganu Malaysia 
Based on Sentinel-2 Data on Google Earth Engine 

Fatchurrachman1, Norhidayah Che Soh1, Ramisah Mohd Shah1, Frisa Irawan 
Ginting1, Sunny Goh Eng Giap2, Muhammad Nazir Siham3 and Rudiyanto1*
1Program of Crop Science, Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala 
Nerus 21030, Terengganu, Malaysia 
2Program of Environmental Technology, Faculty of Ocean Engineering Technology, Universiti Malaysia 
Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
3Malaysian Remote Sensing Agency, Ministry of Energy, Science, Technology, Environment and Climate Change, 
No 13, Jalan Tun Ismail, 50480, Kuala Lumpur, Malaysia

ABSTRACT

Rice is a vital staple food in Malaysia, with consumption of 2.7 million MT in 2016, forecasted to 
rise to 3.5 million MT by 2026. To address food security, the Malaysian government targets a 70% 
self-sufficiency level (SSL) in rice production, requiring precise spatiotemporal information on 
rice cultivation. Remote sensing has been widely used to map rice extent in Malaysia, particularly 
in granary areas (facilitated by irrigation system), the main production zones. However, studies 
on non-granary areas (without irrigation systems) remain limited. This study addresses this gap 
by employing the Phenology-Expert Based Unsupervised Classification Method (PEB-UC) with 
Sentinel-2 time series data on the Google Earth Engine platform to map rice extent and cropping 
patterns at the sub-district level across Terengganu State, Malaysia, covering both granary and non-

granary areas. The results revealed scattered rice 
parcels totalling 8,184 ha, with 4,377 ha in the 
IADA KETARA granary area (Besut District) 
and 3,807 ha in non-granary areas. The maps 
showed a relative discrepancy of -29.15% with 
agricultural statistics but demonstrated a strong 
correlation at the district level (R2 = 0.99; RMSE 
= 632 ha). Validation of PEB-UC achieved an 
overall accuracy of 0.979 and a kappa coefficient 
of 0.957, outperforming Random Forest (RF) 
and Support Vector Machine (SVM) models. 
The PEB-UC rice map displayed denser, 
clearer separability between rice and non-rice 
compared to supervised models, as shown in 
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the comparison map at https://rudiyanto.users.earthengine.app/view/riceterengganu. This study 
provides valuable insights into rice cultivation in Terengganu State and supports efforts to enhance 
food security. 

Keywords: Cropping pattern, Google earth engine, harvested area, paddy rice map, phenology, Sentinel-2 

INTRODUCTION

Rice serves as a primary dietary component across Southeast Asia (SEA), including 
Malaysia. In 2016, the consumption of rice in Malaysia amounted to 80 kilograms per 
capita, totalling 2.7 million metric tons of rice consumed. The annual consumption of 
rice in Malaysia is on the rise and is forecasted to reach 3.5 million MT by 2026 (Omar 
et al., 2019). In response to the national food security issue, the Malaysian government, 
through the Rancangan Malaysia Ke-12 (12th Malaysia Plan), has set a goal of attaining 
a self-sufficiency level (SSL) of 75% for domestic rice production, equivalent to 3 million 
metric tons by 2025 (Ministry of Economy Malaysia, 2023).

Malaysia’s rice production management is divided into two categories: rice production 
managed by rice granary agencies (i.e., completed by irrigation system) and rice production 
outside the agencies (i.e., without irrigation system). Rice granary agencies dominate 
Malaysia’s domestic rice production, constituting approximately 70% of the total supply 
(Omar et al., 2019). 

Terengganu is one of the rice-producing regions in Malaysia. Although it is not the 
main rice producer in Malaysia, Terengganu has one of the granary areas with the highest 
yield, IADA KETARA, reaching up to 5.4 tons per hectare. Additionally, Terengganu 
contributes to national rice production through granary and non-granary areas (Department 
of Agriculture Peninsular Malaysia, 2021). 

In order to achieve the SSL rice target, it is essential to gain precise and current 
information regarding the geographical distribution and quantity of rice cultivation areas. 
In the last decades, remote sensing technology has emerged as an efficient tool to provide 
spatiotemporal information for crop monitoring, including rice. Remote sensing offers a 
cost-effective method for monitoring crops at regional and national scales, as it facilitates 
the rapid retrieval of spatially distributed information over large areas. In contrast to field 
surveys, which are often time-consuming, lack geographical details and are also costly 
(Omia et al., 2023; Wang et al., 2024).

Rice has highly dynamic changes in growth stages to differentiate rice from other 
crops and land covers, in which time series imagery data are required (Ni et al., 2021; 
Rudiyanto et al., 2019). Moreover, the characteristics of rice fields in SEA typically 
consist of small blocks, averaging less than 1 ha, necessitating high-resolution imagery 
data (Fatchurrachman et al., 2022; Setiyono et al., 2018). Sentinel-2A and 2B satellites 
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constellation, which are equipped with multispectral instruments (MSI), offer imagery 
data covering a range of visible, near-infrared (NIR) and short-wave infrared (SWIR) 
wavelengths and have high-resolution ranging from 10-60 m (depending on the 
selected band) (Griffiths et al., 2019; Jiang et al., 2023). These satellite imagery data 
also have a monthly revisit time of 5-6 times. These features of Sentinel-2 imagery 
data make it particularly suitable for mapping rice. Multiple studies have demonstrated 
the successful utilisation of Sentinel-2 imagery for mapping rice fields across diverse 
regions, including Bangladesh (Tiwari et al., 2024), China (Feng et al., 2023), Egypt 
(Ali et al., 2021), India (Raju et al., 2022), Indonesia (Rudiyanto et al., 2019), and 
Pakistan (Rauf et al., 2022).

Data-driven mapping algorithms, such as machine learning and deep learning, have 
become increasingly popular in rice mapping (Liu et al., 2022; Ramadhani et al., 2020). 
Despite their excellent performance, extensive ground data samples are needed to train 
the algorithm (Padarian et al., 2020; Thorp & Drajat, 2021; Zhao et al., 2021). Another 
limitation of the supervised classification is the difficulty of transferring the model due to 
regional or temporal differences (Qiu et al., 2024). 

On the other hand, unlike the supervised methods, unsupervised methods can 
eliminate the need for extensive ground training samples. In particular, the k-means 
unsupervised method has the ability to generalise clusters from data patterns and group 
time series data into unique spectral responses related to rice phenology and other land 
uses (Ni et al., 2021; Rudiyanto et al., 2019). Thus, these advantages of the phenology 
unsupervised method can be used to identify rice with varying cropping calendars in 
Southeast Asia (Han et al., 2022).

Current studies by Han et al. (2021), Fatchurrachman et al. (2022), and  Han et 
al. (2022) have mapped rice extent across Peninsular Malaysia using remote sensing 
technology. However, these maps did not provide detailed information on rice’s location 
and planting schedule in non-granary areas. Despite non-granary areas accounting for 
approximately 25% of the total rice field area in Peninsular Malaysia (Department of 
Agriculture Peninsular Malaysia, 2021), their contribution cannot be overlooked in 
addressing food security issues.

Considering the existing research gap, this study’s objective was to map the extent 
of rice cultivation and its cropping pattern in Terengganu State, Malaysia, which covers 
granary and non-granary areas at the sub-district level. It was accomplished through 
the utilisation of Sentinel-2 temporal data and phenology-expert-based unsupervised 
classification (PEB-UC) within the Google Earth Engine (GEE) platform. The outcomes 
of this study will offer crucial information on the extent of rice cultivation and its cropping 
schedule in Terengganu State at the Sub-district level, which can aid in addressing food 
security concerns. 



468 Pertanika J. Sci. & Technol. 33 (1): 465 - 489 (2025)

Fatchurrachman, Norhidayah Che Soh, Ramisah Mohd Shah, Frisa Irawan Ginting,
Sunny Goh Eng Giap, Muhammad Nazir Siham and Rudiyanto

STUDY AREA AND RICE CULTIVATION PRACTICES

Terengganu is one of the states in Malaysia located on the northeastern coast of Peninsular 
Malaysia (3.87o N–5.85o N and 102.37o E–103.69o E; Figure 1). Terengganu comprises seven 
Districts: Besut, Dungun, Kemaman, Kuala Terengganu (Kuala Nerus), Marang, Setiu, and 
Hulu Terengganu. Similar to other states in Peninsular Malaysia, Terengganu undergoes two 
monsoon seasons: the northeast monsoon (NEM), occurring from November to March, and 
the southwest monsoon (SWM), which lasts from May to September. Additionally, there are 
two short transitional periods, spanning from April to May and October to November. The 
NEM brings heavy rains to this region. The annual mean air temperature ranges between 
26o and 28oC (Suratman et al., 2015).

The rice fields in the study area are categorised as irrigated and non-irrigated. The 
rice intensity in the study area is mostly a double rice cropping pattern. Planting seasons 
are categorised into the main season, featuring wet paddy rice cultivation from September 
to March, and the off-season rice crop from April to September. Locally referred to as 
“tanaman musim utama” and “tanaman luar musim”, respectively. The off-season denotes 
a period marked by the lack of precipitation in the region (Hashim et al., 2022). 

Terengganu has one active rice granary area: the Integrated Agriculture Development 
Area (IADA) Kawasan Pembangunan Pertanian Terengganu Utara (KETARA). IADA 

Figure 1. The study location comprises 7 Districts in Terengganu State, Malaysia. Rice extent based on 
this study is shown in red
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KETARA is one of Malaysia’s top rice producers, with yields surpassing 5.0 to 5.4 MT/
ha (Omar et al., 2019).

DATA COLLECTION

Sentinel-2 Temporal Imagery Data

The Sentinel-2 (S2) satellite constellation consists of two satellites, namely Sentinel-2A 
and Sentinel-2B. These satellites were launched by the European Space Agency (ESA) 
on 23 June 2015 (S2A) and 7 March 2017 (S2B), respectively. S2 satellites are equipped 
with a multispectral instrument (MSI) that acquires images with a swath width of 290 km 
and a spatial resolution ranging from 10-60 m (depending on the selected band). The S2 
mission has a ten-day revisit time at the equator when utilising a single satellite and five 
days when the entire constellation is operational. (Xiao et al., 2021). 

The Sentinel-2 Level-2A (Surface Reflectance, SR/ Bottom of Atmosphere (BOA) ) 
images were not utilised in this study due to the presence of numerous artefacts and often 
being overcorrected, as noted by Brinkhoff et al. (2022) and Fatchurrachman et al. (2022). 
A recent study by Pascual-venter et al. (2024) suggests that TOA radiance has slightly 
better accuracy than BOA (SR) radiance. Pascual-venteo et al. (2024) also indicate that 
utilising TOA radiance can eliminate the need for complex atmospheric correction when 
retrieving vegetation traits, streamlining the process and potentially improving accuracy. 
Therefore, Sentinel-2 Level-1C (Top-of-Atmosphere Reflectance, TOA) images were 
chosen for this study.

Prior research has also documented the successful utilisation of Sentinel-2 Level-1C 
data for mapping paddy extent, such as in China (Ni et al., 2021; Shen et al., 2023) and 
Malaysia (Fatchurrachman et al., 2022). S2 L1C refers to Top-of-Atmosphere (TOA) 
reflectance image data that have been subject to radiometric and geometric corrections. 
These corrections encompass ortho-rectification and spatial registration on a global 
reference system, ensuring sub-pixel accuracy (European Space Agency, 2015; Google 
Developers, 2022). 

Four bands from the S2 L1C TOA dataset were employed for computing the Normalised 
Difference Vegetation Index (NDVI) and Modified Normalised Difference Water Index 
(MNDWI). Band 4 (red) and 8 (near-infrared, NIR) were employed for computing NDVI, 
while band 3 (green) and band 11 (short-wave infrared 1 or SWIR1) were used to calculate 
MNDWI. The S2 TOA images possess a spatial resolution of 10 meters. S2 TOA temporal 
data were collected from January 2022 to October 2023, covering the study area’s main 
and off seasons. A total of 3,900 scenes of S2-TOA temporal data were obtained from 
the Google Earth Engine (GEE) catalogue. GEE, a cloud-based platform for geospatial 
analysis (Gorelick et al., 2017), facilitated tasks such as data access, image pre-processing, 
vegetation index computation, area mapping, and calculations.
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ESA WorldCover 10 m v100 2020

The ESA WorldCover 10m v100 was used to exclude non-cropland areas by masking out 
the cropland area (class value 40). Spurious data from other land cover types that could 
impact classification results were reduced, focusing on the cropland areas. The ESA 
WorldCover 10 m v 100 2020 dataset was generated based on the combination of Sentinel-1 
and 2 temporal data as part of the ESA WorldCover project, which is a component of the 
5th Earth Observation Envelope Programme (EOEP-5) by the European Space Agency. 
The product is a global land cover map for the year 2020 with a resolution of 10 meters, 
based on data from Sentinel-1 and Sentinel-2 satellites. The product contains 11 classes of 
land cover that include tree cover, shrubland, grassland, cropland, built-up, bare or sparse 
vegetation, snow and ice, permanent water bodies, herbaceous wetland, mangroves, moss 
and lichen (Google Developers, 2021; Zanaga et al., 2021). 

Google Street View Images

Google Street View images accessed from Google Maps were utilised to verify the presence 
of rice fields in the classified area. Although the images were not acquired in 2022, they 
can still be used as indicators for the presence of rice fields in the classified area. Points 
of verification are accessible on the Google Earth Engine (GEE) platform (https://code.
earthengine.google.com/7cb17f0460c4d9a00cc00787a28ec8a0).

Administrative Boundary

The administrative boundaries at both the State and District levels were acquired from the 
Global Administrative Unit Layers (GAUL) dataset provided by the Food and Agriculture 
Organization of the United Nations (FAO UN). The boundary data were accessed through 
the GEE catalogue using the command ee.FeatureCollection(“FAO/GAUL/2015/level2”). 

Agricultural Statistics and Existing Rice Map

This study compared results using the Malaysia Paddy Production Survey (PPS) report 
published in 2021. The report collected estimates of yield, planted area and production for 
each season using probability sampling methods and objective measurements. These data 
were generated at the District, State and granary area levels (Department of Agriculture 
Peninsular Malaysia, 2021). The paddy parcel and harvested areas were compared with 
this study’s estimates and presented in hectares (ha).

An existing rice map, NESEA-Rice10, was also compared with the results of this study 
(Table 1). NESEA-Rice 10 is a project that provides paddy rice maps for Northeast and 
Southeast Asia. It utilises a rule-based method combining temporal data of Sentinel-1 and 
MODIS satellite data to overcome the mixed-pixel challenge arising from coarse spatial 
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resolution. The dataset is publicly available at https://doi.org/10.5281/zenodo.5645344 
(Han et al., 2021) and can be accessed for further analysis and decision-making.

METHODOLOGY

Figure 2 illustrates the workflow of the methodology employed in this study. The 
methodology framework employed in this study is referred to as the framework of 
phenology-expert-based unsupervised classification method (PEB-UC), which involves 
combining the k-means unsupervised method with expertise in rice phenology curves 
from Sentinel-2 data.   

Data Pre-processing 

Sentinel-2 TOA temporal data spanning from January 2022 to October 2023 were employed; 
These data were compiled and processed into the Monthly Maximum Value Composite 
(MaxVC) of NDVI and MNDWI. NDVI spectral was used to differentiate rice from other 
land covers and identify growth stages (Fatchurrachman et al., 2022; Ni et al., 2021). 
Meanwhile, MNDWI was used to detect the presence of standing water during the tillage 
and planting stage. In addition, although wet surfaces and built-ups have similar reflectance, 
MNDWI is capable of improving the differentiation between those two objects (Mansaray et 
al., 2019; Talema & Hailu, 2020). NDVI was calculated using Equation 1, employing band 
4 (red) and band 8 (near-infrared). Meanwhile, MNDWI was calculated using Equation 2, 
employing band 3 (green) and band 11 (short-wave infrared 1 or SWIR1): 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 8 (𝑁𝑁𝑁𝑁𝑁𝑁) –  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 4 (𝑁𝑁𝑅𝑅𝑏𝑏)
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 8 (𝑁𝑁𝑁𝑁𝑁𝑁)  +  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 4 (𝑁𝑁𝑅𝑅𝑏𝑏)

      [1]

Table 1
Rice parcel area comparison between this study data, NESEA-Rice10 and statistic and its relative discrepancy

No Districts
Rice parcel area by Relative 

discrepancy
Relative 

discrepancy
This study 

(ha)
NESEA-

Rice10 (ha) Statistic (ha) (a) and (b) (a) and (c)

  (a) (b) (c) (%) (%)
1 Besut 6,148 6,145 7,370 0.05 -16.58
2 Dungun 33 721 44 -95.42 -25.00
3 Hulu Terengganu 164 348 300 -52.87 -45.33
4 Kemaman 49 737 93 -93.35 -47.31
5 Kuala Terengganu 683 577 1,387 18.37 -50.76
6 Marang 208 455 792 -54.29 -73.74
7 Setiu 899 2,287 1,565 -60.69 -42.56
 Total 8,184 11,270 11,551 -27.38 -29.15
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Figure 2. Workflow of the methodology in this study

𝑀𝑀𝑁𝑁𝑁𝑁𝑀𝑀𝑁𝑁 =
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 3 (𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑏𝑏) –  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 11 (𝑆𝑆𝑀𝑀𝑁𝑁𝑁𝑁1)
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 3 (𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑏𝑏)  +  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 11 (𝑆𝑆𝑀𝑀𝑁𝑁𝑁𝑁1)

     [2]

Phenological studies using Sentinel-2 are limited by data gaps arising due to cloud 
cover, a prevalent issue with optical sensors (Misra et al., 2020). Additionally, optical 
Sentinel-2 data can be influenced by various factors, including changes in illumination and 
viewing conditions within and across images, fluctuations in atmospheric constituents such 
as water vapour and aerosol concentrations, as well as the presence of cloud cover (Holben, 
1986). This study minimises these effects using maximum value composites (MaxVC) of 
the NDVI calculated from Sentinel-2 TOA temporal data from January 2022 to October 
2023. MaxVC of the NDVI has proven effective in prior studies utilising MODIS, SPOT, 
and Sentinel-2 data (de Bie et al., 2012; Fatchurrachman et al., 2022; Gumma et al., 2014).

A compilation of 22 months of MaxVC NDVI and MNDWI datasets from January 
2022 to October 2023 was stacked into a single image. First, we excluded non-cropland 
areas using the ESA WorldCover 10m v100 cropland band to reduce computational time, 
This procedure extracted rice fields from the classified cropland area and herbaceous area. 
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Concentrating on the cropland and herbaceous areas eliminated spurious data from other 
land cover area types that could impact classification results; it also significantly reduced 
computational cost and time. 

Phenology-expert Based Unsupervised Classification Method (PEB-UC) 

The pre-processed images served as inputs for the K-Means clustering model, implemented 
using the ee.Clusterer.wekaKMeans function within the GEE. This model employed a 
random-point sampling technique to establish centroids and produce clusters. Subsequently, 
these clusters were used to visually distinguish rice field and non-rice field areas based on 
characteristic spectral profiles derived from a monthly composite of NDVI and MNDWI 
temporal data.

Figure 3 illustrates the temporal evolution of the NDVI and MNDWI cluster profiles for 
four land covers: water bodies, built-up areas, trees and rice fields. Rice fields demonstrate 
a distinct temporal cluster profile characterised by seasonal fluctuations in NDVI values, 
while signals for other land covers remain relatively stable.

In detail, rice fields are flooded with water during the tillage and planting stage (T). 
Figure 3 depicts rice fields exhibiting a local minimum NDVI value during this period, 
while the MNDWI value reaches a maximum peak (F) (similar spectral of a water body 
or wet surface). Subsequently, as rice grows and canopy closure occurs in the vegetative 
(V) and reproductive (R) stages, increasing chlorophyll signals coincide with a significant 
decrease in soil signals (Ni et al., 2021). Consequently, NDVI value rapidly increased 
during this period, peaking at the end of the reproductive period. In contrast, the MNDWI 
value decreased until the maturity period (M) as the water content decreased.

A rapid decrease in chlorophyll content marks the maturity (M) period as the carotenoid 
content increases (Ni et al., 2021). This distinctive drop in NDVI values indicates the 
maturity of the rice plant, typically occurring in the last month of the rice growth cycle. 
Finally, NDVI values decreased due to biomass loss, signalling the harvest and fallow stages.

The representative cluster profiles of NDVI and MNDWI were visually identified, 
separating rice and non-rice field areas. We employed this method in our previous studies 
(Fatchurrachman et al., 2022; Rudiyanto et al., 2019) and successfully generated highly 
accurate maps of rice field extent.

Supervised Classification Model 

In addition, we also performed supervised classification methods using random forest (RF) 
and support vector machine (SVM) to map rice parcel extent (growing area) in GEE. RF 
is an ensemble learning method that addresses the limitations of single decision trees by 
integrating many trees through a process called bootstrap aggregating (bagging) (Breiman, 
2001). Meanwhile, SVM utilises a hyperplane to divide the support vectors and distinctly 
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classify the data points (Maxwell et al., 2018). RF and SVM have built-in parameters that 
can be tuned to enhance their prediction performance. Based on trial and error, the number 
of tree parameters in the RF model was set to 30, while the SVM model used a radial basis 
function (RBF) kernel type with a gamma parameter of 0.5 and a cost of 10.

For training and validation of the models, 247 points (126 rice and 121 non-rice class) 
were visually labelled based on the very high-resolution image (VHRI) base map (i.e., 
satellite layer) in GEE and the Street View images in Google Maps. The observed data 
were randomly split into training and validation groups with a ratio of 8:2. For comparison, 
the same validation sample data were also used to check the validation accuracy of the 
PEB-UC classification results.

Figure 3. Temporal evolution of monthly composite NDVI and MNDWI cluster profile for four land-cover 
classes: water body, built-up, tree and rice field; T = tillage and planting, V = vegetative, R = reproductive, 
M = maturity, F = Flooding, OS = off-season, MS = main season
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Accuracy Assessment  

The agreement between the statistics of rice extent areas and the results obtained in this 
study was assessed using the coefficient of determination (R2), as shown in Equation 3; the 
root mean square error (RMSE), as shown in Equation 4; and the percentage of relative 
discrepancy (%RD), as shown in Equation 5.

𝑁𝑁2 = 1 −
∑ (𝑦𝑦𝑅𝑅−𝑖𝑖  −  𝑦𝑦𝑠𝑠−𝑖𝑖)2𝑏𝑏
𝑖𝑖=1
∑ (𝑦𝑦𝑠𝑠−𝑖𝑖  −  𝜇𝜇)2𝑏𝑏
𝑖𝑖=1

       [3]

RMSE = �∑ (𝑦𝑦𝑅𝑅−𝑖𝑖  − 𝑦𝑦𝑠𝑠−𝑖𝑖)2n
i=1

𝑏𝑏
        [4]

% RD = (𝑦𝑦𝑅𝑅−𝑖𝑖  − 𝑦𝑦𝑠𝑠−𝑖𝑖)
𝑦𝑦𝑠𝑠−𝑖𝑖

 × 100        [5] 

Where ye is the estimated rice extent from this study, and ys is the rice extent from either 
statistical data or existing rice map of NESEA-Rice 10, subscript-i represents District, 
and n is the total Districts in Terengganu. Furthermore, the accuracy of the produced rice 
parcel extent maps from PEB-UC, RF and SVM models was also evaluated using overall 
accuracy and kappa coefficient through a contingency matrix for both the training and 
validation datasets.

RESULTS AND DISCUSSION

The PEB-UC proposed in this study is straightforward and resulted in rice parcel extent 
and rice cropping intensity through visual observation of the phenology of the spectral 
profile of Sentinel-2 time series data. Thus, we discussed the PEB-UC extensively in this 
study. Subsequently, we evaluated the comparison results between the PEB-UC and the 
two supervised methods (RF and SVM).

Distribution of Rice Extent and Cropping Schedule

Based on the labelled rice clusters extracted from the PEB-UC, rice extent or growing area 
across Terengganu was identified as shown in Figure 1 (https://rudiyanto.users.earthengine.
app/view/riceterengganu). These rice extent areas were then calculated and presented at 
the district level. According to our findings, rice fields in Terengganu are dispersed across 
all districts. The total area of rice fields in Terengganu amounts to 8,184 hectares, with 
53% (4,377 ha) situated within the IADA KETARA granary area exclusively in Besut 
District and the remaining 47% (3,807 ha) in non-granary areas distributed throughout the 
entire region. Figure 4 illustrates the distribution of the total rice fields (8,184 ha), where a 
significant portion of 75.12% (6,148 ha) of Terengganu’s rice area is concentrated in Besut 
District, followed by Setiu 10.98% (899 ha), Kuala Terengganu (including Kuala Nerus) 
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Figure 4. Percentage of Rice Field Extent at District level of Terengganu State, Malaysia

Figure 5. Rice extent at Besut District (red colour). The green colour line is the boundary area of IADA 
KETARA. © Google Street View image coordinate 102.50696604601183, 5.670731115164914

8.35% (683 ha), Marang 2.54% (208 ha), Hulu Terengganu 2% (164 ha), and Kemaman 
0.60% (49 ha), with Dungun having the smallest area at 0.40%, equivalent to 33 hectares.

Figure 5 showcases rice fields in Besut District, primarily situated along the northern 
Terengganu border with Kelantan State. The NDVI spectral profile indicates double 
cropping seasons, with rice planted in January and July. Most rice fields, constituting 
71% of Besut’s parcels, are within the IADA KETARA granary area, while 29% are in 
non-granary regions.

Only 24.9% of rice fields are situated beyond Besut District, with Dungun District 
featuring a singular planting area in Sungai Melung Sub-district (Supplementary Figure 
1). Notably, based on the NDVI spectral profile, rice cultivation in this region occurs once 
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a year, specifically in April (2021) and February (2022). Moving on to Hulu Terengganu, 
rice cultivation spans across four sub-districts: Tok Lawit, Matang (Supplementary Figure 
2a), Gaung, and Kemat (Supplementary Figure 2b), with planting occurring twice annually, 
in February and July. Similarly, Kemaman’s rice cultivation is distributed across two sub-
districts, Pasir Semut (Supplementary Figure 3a) and Dadong (Supplementary Figure 3b), 
both following a double cropping season with plantings in February and June, as depicted in 
the NDVI spectral profile, while fluctuations or sudden drops suggest the presence of clouds.

In Kuala Terengganu, encompassing Kuala Nerus, rice fields are dispersed across 
eleven sub-districts: Darat Batu Rakit, Tok Kulit, Padang Maras, Maras, Medan Cengal, 
Bukit Cempaka, Teluk Merbau, Bukit Wan (Supplementary Figure 4a), Tualang, Wakaf 
Mempelam, Gong Kemunting, and Alur Parit (Supplementary Figure 4b). Kuala Terengganu 
adopts a double cropping schedule, with rice planted in March and October. In Marang, 
rice cultivation is segmented across four sub-districts: Lubuk Pandan, Jerong Tuan, Bukit 
Kulim, and Bukit Jelulong (Supplementary Figure 5), adhering to a single cropping system 
with rice planted either in November or December. Lastly, in Setiu District, rice cultivation 
predominantly concentrates in the Permaisuri area, notably across four sub-districts: Gong 
Kubu, Kederang, Bukit Kemudu, and Buruk (Supplementary Figure 6a), alongside Alur 
Serdang Sub-district (Supplementary Figure 6b). Setiu operates on a double cropping 
system, with rice planted in January and September.

In summary, five districts—Besut, Hulu Terengganu, Kemaman, Kuala Terengganu, 
and Setiu—feature double cropping seasons in one year. Meanwhile, Dungun and Marang 
Districts adhere to a single cropping season within the same timeframe.

Comparison of Classification Results with Statistical Data and Existing Map 
Product

Table 1 compares the extent of rice parcel area in seven districts of Terengganu as 
determined by this study (2022), NESEA-Rice10 (2019), and agricultural statistics from 
2021. The total area estimated for rice fields in this study is 8,184 hectares, compared to 
11,270 hectares reported by NESEA-Rice10 and 11,551 hectares according to agricultural 
statistics in 2021. The map generated in this study shows a relative discrepancy of -29.15% 
from the agricultural statistics, whereas the discrepancy from NESEA-Rice10 is -27.38%. 
This discrepancy, particularly evident in the NESEA-Rice10 dataset, is attributed to the 
inclusion of non-rice areas being misclassified as rice fields, a phenomenon often referred 
to as the “salt and pepper effect.” Due to the lack of spatial data, further investigation into 
this statistical disparity was not feasible.

Figures 6a and 6b show scatter plots of the agreement between the rice extent calculated 
from this study, agricultural statistics data, and the agreement between the NESEA-Rice10 
estimates for 2019 (Han et al., 2021) and agricultural statistics data, respectively. This 
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study’s estimated rice field extent had a higher correlation with agricultural statistics with 
a coefficient of determination R2 = 0.99 and an RMSE of 632 ha (Figure 6). Meanwhile, 
the correlation of the NESEA-Rice10 map with agricultural statistic data was R2 = 0.93 
and RMSE of 732 ha (Figure 6b). By comparison, this study has a better agreement than 
the NESEA-Rice10 map product to the statistical data.  

Table 2 lists the rice harvested area across seven districts of Terengganu generated from 
this study compared with agricultural statistics from 2021. Based on the results, the study 
data and the statistics indicate that the harvested area during the main seasons is larger 
than during the off-season. The number of seasons identified in this study data aligns well 

Figure 6. Comparison between rice area estimates derived from (a) this study and statistical data (District 
level) and (b) NESEA-Rice10 data and statistical data (District level)

Table 2
The harvested rice area and number of seasons are compared using this study’s data and statistics 

No Districts
This Study Statistic

Harvested Area (ha) Number of 
Season per 

year

Harvested Area (ha) Number of 
Season per 

year  Off 
Season

Main 
Season

Off 
Season

Main 
Season

1 Besut 6,148 6,148 2 7,095 7,095 2
2 Dungun 0 33 1 0 33 1
3 Hulu Terengganu 164 164 2 120 193 2
4 Kemaman 49 49 2 58 58 2

5 Kuala 
Terengganu 683 683 2 377 1,167 2

6 Marang 0 208 1 0 509 1
7 Setiu 899 899 2 1,448 1,448 2
 Total 7,943 8,184 9,098 10,503

(a) (b)
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with the 2021 statistics. Overall, the study data underestimate the harvested areas during 
both off-season and main seasons compared to the statistical data from 2021.

Comparison between PEB-UC and Supervised Classification

Accuracy of Classification Models 

The accuracy assessment between the PEB-UC, RF, and SVM classification models is listed 
in Supplementary Table 1. The PEB-UC classification result was validated using the same 
validation sample points as the supervised models. The overall accuracy for the validation 
of PEB-UC was 0.979, with a kappa coefficient of 0.957, which is higher compared to 
both RF (overall accuracy = 0.875 and kappa = 0.743) and SVM (overall accuracy = 0.937 
and kappa = 0.870). PEB-UC outperformed both supervised methods because the two 
supervised methods showed relatively high overfitting, as indicated by a training overall 
accuracy of 1 and a kappa coefficient of 1 (Supplementary Table 1). 

Comparison of Rice Parcel Area and Quality of Rice Map

Comparison of rice parcel areas between PEB-UC, RF, SVM, and statistics, along with 
their relative discrepancies, are presented in Supplementary Table 2. PEB-UC estimated 
8,184 ha, RF 8,428 ha, and SVM 7,966 ha. Compared to 2021 agricultural statistics (11,551 
hectares), the relative discrepancies were -29.15% for PEB-UC, -27.04% for RF, and 
-31.04% for SVM. The PEB-UC rice map also shows more dense and clear separability 
between rice and non-rice (roads, irrigation 
channels, built-up areas, and other vegetation 
covers) compared to both supervised models, 
as shown in the comparison map available at 
https://rudiyanto.users.earthengine.app/view/
riceterengganu. 

Uncertainty Source

The current study has successfully produced a 
highly accurate map of rice extent. Nonetheless, 
it is essential to acknowledge certain potential 
limitations. Common errors occur at the 
boundary zones between rice and non-rice 
fields. The mixed pixel effect at these boundary 
zones contributed to this discrepancy, as 
illustrated in Figure 7. This effect, documented 
in previous rice mapping studies, remains a 

Figure 7.  Example of error in rice field 
classification: The red colour shows an area 
classified as a rice field, while the RGB colour 
is the non-rice areas in Besut District (102.45713 
E, 5.74593 N)
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significant source of spatial uncertainty (Clauss et al., 2016; M Wang et al., 2022; Mo Wang 
et al., 2022). Commission errors, where non-rice areas are misclassified as rice fields, were 
primarily attributed to unwell-managed rice blocks being detected as rice.

CONCLUSION

The Phenology-Expert Based Unsupervised Classification Method (PEB-UC), using 
Sentinel-2 time series imagery data on the Google Earth Engine platform, has successfully 
generated a high-resolution (10 m) map of rice extent across Terengganu, Malaysia. 
This approach also offers cropping calendars based on monthly NDVI spectral profiles. 
The study reveals that the total rice extent in Terengganu is 8,184 hectares, with 53% 
situated in the IADA KETARA granary area and the remaining portion spread across non-
granary areas. At the district level, the estimated rice field extent correlates strongly with 
agricultural statistics (R2 = 0.99, RMSE = 632 ha), and the number of cropping seasons 
per year in this study aligns well with the statistics. The overall accuracy for the validation 
of PEB-UC was 0.979, with a kappa coefficient of 0.957, which outperformed both RF 
and SVM models. The PEB-UC rice map also shows more dense and clear separability 
between rice and non-rice compared to both supervised models. These insights into the 
spatial and temporal patterns of rice cultivation in Terengganu are valuable for policy 
formulation by the Department of Agriculture (DOA) Malaysia. Additionally, these 
spatial data complement agricultural statistical data, frequently presented as tabulated 
numerical data only.
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 Supplementary Figure 1. Rice extent at Dungun District. Rice location coordinates 103.10482603697415, 
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Supplementary Figure 2. Rice extent at Hulu Terengganu District: (a) Tok Lawit and Matang Sub-district, 
(b) Gaung and Kemat Sub-district. © Google Street View image coordinate: (a) 102.89854868916677, 
5.15998499939375; (b) 102.98815719945003, 5.074533627188336
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Supplementary Figure 3. Rice extent at Kemaman District: (a) Pasir Semut Sub-district; (b) Dadong Sub-
district, © Google Street View image coordinate: (a) 103.34212221711789; 4.223077206270977 (b) 
103.23149627791656, 4.282389429361505
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Supplementary Figure 4. Rice extent at Kuala Terengganu District: (a) Darat Batu Rakit, Tok Kulit, Padang 
Maras, Maras, Medan Cengal, Bukit Cempaka, Teluk Merbau, Bukit Wan Sub-districts; (b) Tualang, Wakaf 
Mempelam, Gong Kemunting, and Alur Parit Sub-districts, © Google Street View image coordinate (a) 
103.04158359086921, 5.41650121980068 (b) 103.15765153308007, 5.289039091455927
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Supplementary Figure 5. Rice extent at Marang District. © Google Street View image coordinate 
103.1121499235461, 5.146720931152082
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Supplementary Figure 6. Rice extent at Setiu District; (a) Gong Kubu, Kederang, Bukit Kemudu, and Buruk 
Sub-district, (b) Alur Serdang Sub-district, © Google Street View image coordinate (a) 102.75026252196312, 
5.536907633129734 (b) 102.67003608683842, 5.63992921464419
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Supplementary Table 1
Accuracy comparison of classification models: PEB-UC, RF and SVM 

Method
Training Validation

Overall Accuracy Kappa Coefficient Overall Accuracy Kappa Coefficient
PEB-UC - - 0.979 0.957
RF 1.000 1.000 0.875 0.743
SVM 1.000 1.000 0.937 0.870

Supplementary Table 2 
Rice parcel area comparison between this study data (PEB-UC), RF, SVM and statistics and its relative 
discrepancy

Rice Parcel Area by (ha) Relative discrepancy
PEB-UC RF SVM Statistic (a) and (d) (b) and (d) (c) and (d)

(a) (b) (c) (d) (%) (%) (%)
8,184 8,428 7,966 11,551 -29.15 -27.04 -31.04




